LangDA: Language-guided Domain Adaptive Semantic Segmentation

1/21/2025

Chang Liu¹ Saad Hossain¹ C Thomas² Kwei-Herng Lai² Raviteja Vemulapalli² Sirisha Rambhatla¹ Alexander Wong^{1,2} ¹University of Waterloo ²Apple {chang.liu,s42hossa,sirisha.rambhatla,alexander.wong}@uwaterloo.ca {c.thomas,khlai,r_vemulapalli}@apple.com

Complex Scene: How Should We Understand It?

Classification Detection Semantic Segmentation

This Is... A Road?

FACULTY OF ENGINEERING

Locate Cars & Bikes

Knows exactly where each class is

Classification Detection Semantic Segmentation

LangDA: Language-guided Domain Adaptive Semantic Segmentation

PAGE 5

However. .. Manual Annotation

However... Manual Annotation

FACULTY OF ENGINEERING

Deep Learning Methods

Semi-supervised learning

Weakly-supervised learning

Transfer learning

Unsupervised domain adaptation

Learning from Synthetic Data

Zero-shot learning and few-shot learning

Active learning

Deep Learning Methods

Semi-supervised learning

Weakly-supervised learning

Transfer learning

Unsupervised domain adaptation

Learning from Synthetic Data

Zero-shot learning and few-shot learning

Active learning

Transfer Learning: Transfer and Adaptation

- Learn on one task, transfer to another
- Learn on one labelled distribution, test on another unlabeled distribution

Transfer Learning: Transfer and Adaptation

- Learn on one task, transfer to another
- Learn on one labelled distribution, test on another unlabeled distribution

Unsupervised Domain Adaptation

Related data distributions still have differences Source domain -> Unlabeled Target domain

Related data distributions still have differences Source domain -> Unlabeled Target domain

• Different weather

Related data distributions still have differences Source domain -> Unlabeled Target domain

• Different weather

Related data distributions still have differences Source domain -> Unlabeled Target domain

• Different weather, lighting

Related data distributions still have differences Source domain -> Unlabeled Target domain

- Different weather, lighting
- Synthetic vs. real

Related data distributions still have differences Source domain -> Unlabeled Target domain

- Different weather, lighting
- Synthetic vs. real

Related data distributions still have differences Source domain -> Unlabeled Target domain

- Different weather, lighting
- Synthetic vs. real

Related data distributions still have differences Source domain -> Unlabeled Target domain

- Different weather, lighting
- Synthetic vs. real

Prior Work: Traditional UDA

Knowledge distillation

Images

Images

Images

Language information?

Images

Vision Language Models!

Images

Vision Language Models!

"The image shows a busy city scene with road filled with cars, motorcycles, and bicycles. Sidewalk has pedestrians and riders. Buildings, fence, and pole are in the background. Vegetation is near the edge, and sky above. People are scattered across the scene, some near the road, others by the buildings."

Images

Vision Language Models!

"The image shows a busy city scene with road filled with cars, motorcycles, and bicycles. Sidewalk has pedestrians and riders. Buildings, fence, and pole are in the background. Vegetation is near the edge, and sky above. People are scattered across the scene, some near the road, others by the buildings."

Language descriptor z_s

"The image shows a busy city scene with road filled with cars, motorcycles, and bicycles. Sidewalk has pedestrians and riders. Buildings, fence, and pole are in the background. Vegetation is near the edge, and sky above. People are scattered across the scene, some near the road, others by the buildings. Some areas are unlabeled."

Language descriptor z_s

"The image shows a busy city scene with road filled with cars, motorcycles, and bicycles. Sidewalk has pedestrians and riders. Buildings, fence, and pole are in the background. Vegetation is near the edge, and sky above. People are scattered across the scene, some near the road, others by the buildings. Some areas are unlabeled."

Language descriptor z_s

"The image shows a busy city scene with road filled with cars, motorcycles, and bicycles. Sidewalk has pedestrians and riders. Buildings, fence, and pole are in the background. Vegetation is near the edge, and sky above. People are scattered across the scene, some near the road, others by the buildings. Some areas are unlabeled."

Language descriptor z_s

"The image shows a busy city scene with road filled with cars, motorcycles, and bicycles. Sidewalk has pedestrians and riders. Buildings, fence, and pole are in the background. Vegetation is near the edge, and sky above. People are scattered across the scene, some near the road, others by the buildings. Some areas are unlabeled."

Language-guided Visual Visual Adaptation Instruction Tuning

FACULTY OF ENGINEERING t-SNE

Left: Prior Work (DAFormer)

Right: LangDA (Ours)

PRESENTATION TITLE

t-SNE

Left: Prior Work (DAFormer)

Right: LangDA (Ours)

Quantitative Result

Method	Backbone	Unlabeled Target Data	Prompt Description	% mIoU↑
Source only	ResNet-50			29.3
PODA [13]	ResNet-50		\checkmark	29.5
ULDA [11]	ResNet-50		\checkmark	30.8
Source only	ResNet-101			29.4
ADVENT [3]	ResNet-101	\checkmark		41.2
CBST [25]	ResNet-101	\checkmark		42.6
DACS [4]	ResNet-101	\checkmark		48.3
CorDA [26]	ResNet-101	\checkmark		55.0
ProDA [27]	ResNet-101	\checkmark		55.5
DAFormer [2]	SegFormer	\checkmark		61.1
LangDA (Ours)	SegFormer	\checkmark	\checkmark	62.0 (+0.9%)

What's Next?

More datasets: Day -> Night, Normal -> Adverse Weather

More baselines & existing works

Ablation studies

More Quantitative Result

Method	Backbone	Unlabeled Target	Text Prompts	% mIoU↑
		Data		
Source only	ResNet-50			29.3
PODA [†] [8]	ResNet-50		\checkmark	29.5
$ULDA^{\dagger}$ [40]	ResNet-50		\checkmark	30.8
Source only	ResNet-101			29.4
ADVENT [37]	ResNet-101	\checkmark		41.2
CBST [43]	ResNet-101	\checkmark		42.6
DACS [36]	ResNet-101	\checkmark		48.3
CorDA [38]	ResNet-101	\checkmark		55.0
ProDA [42]	ResNet-101	\checkmark		55.5
DAFormer [†] [11]	SegFormer	\checkmark		61.1
LangDA(Ours) + DAFormer	SegFormer	\checkmark	\checkmark	62.0
HRDA [12]	SegFormer	\checkmark		65.8
LangDA (Ours) + HRDA	SegFormer	\checkmark	\checkmark	66.3
MIC [13]	SegFormer	\checkmark		67.3
CoPT [24]	SegFormer	\checkmark	\checkmark	67.4
LangDA (Ours) + MIC	SegFormer	\checkmark	\checkmark	70.0

FACULTY OF

ENGINEERING

Qualitative Results: Synthetic -> Real

Qualitative Results: Normal -> Adverse Weather

Qualitative Results: Day -> night

UNIVERSITY OF WATERLOO

FACULTY OF ENGINEERING

Questions?