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Complex Scene: How ShOUId we UnderStand It? Classification Detection Semantic Segmentation
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This IS... A Road? Classification Detection Semantic Segmentation
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Locate cars & Bikes Classification Detection Semantic Segmentation
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Knows exaCtly Where eaCh CIass is Classification Detection Semantic Segmentation

Road Sidewalk Car Building Sign Fence
Tram Vegetation Static Wall Dynamic  Person
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However.l. Manual Annotation
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However... Manual Annotation
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Deep Learning Methods

Semi-supervised learning

Weakly-supervised learning

Transfer learning

Unsupervised domain adaptation

Learning from Synthetic Data

Zero-shot learning and few-shot learning

Active learning
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Transfer Learning: Transfer and Adaptation

= Learn on one task, transfer to another

= Learn on one labelled distribution, test on another unlabeled distribution
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Transfer Learning: Transfer and Adaptation

= Learn on one task, transfer to another

= Learn on one labelled distribution, test on another unlabeled distribution

Unsupervised Domain Adaptation
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E—
Domain Gap

Related data distributions still have differences
domain -> Unlabeled domain
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e
Domain Gap

Related data distributions still have differences
domain -> Unlabeled domain

= Different weather
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Related data distributions still have differences
domain -> Unlabeled domain
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e
Domain Gap

Related data distributions still have differences
domain -> Unlabeled domain

= Different weather, lightin_'g— |
= Synthetic vs. real
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e
Domain Gap

Related data distributions still have differences
domain -> Unlabeled domain

= Different weather, lighting
= Synthetic vs. real
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Related data distributions still have differences
domain -> Unlabeled domain

= Different weather, lighting

= Synthetic vs. real
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Prior Work: Traditional UDA

Source labels ygq

= Knowledge distillation
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Give the model more information?

Images
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Give the model more information?

Images Language information?
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Give the model more information?

Images Vision Language Models!
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Give the model more information?

Images Vision Language Models!

“The image shows a busy city scene
with road filled with cars,
motorcycles, and bicycles. Sidewalk
has pedestrians and riders.
Buildings, fence, and pole are in
the background. Vegetation is near
the edge, and sky above. People are
scattered across the scene, some
near the road, others by the
buildings.”
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Proposed Method: LangDA

Language descriptor zg
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Proposed Method: LangDA

Language descriptor zg

"The image shows a busy city scene

with road filled with cars,

motorcycles, and bicycles. Sidewalk

has pedestrians and riders.

fence,

and pole

Vegetation is near the edge, and sky

above. People are scattered

scene, some near the road, others by

the buildings. Some areas are

unlabeled. "

Language-guzded Visual
Visual
Adaptation

/Instruction!

Tuning

Buildings,

are in the background.

across the

Source labels yg

u "| ,t.:' Y OIhj’

Source image Xgq

Target image X

LangDA: Language-guided Domain Adaptive Semantic Segmentation

®)
Vision
Encoder

(—)
\ 4
A

Vision

Encoder

PAGE 29

Supervised
Loss

' EMA Update

=

CLIP
Text

Encoder

Y

Adapter(\  Cosine
(MLPs) Slmllarlty
Unsupervised
Loss
,\ UNIVERSITY OF
% WATERLOO | Béiien




Proposed Method: LangDA

Language descriptor Zg
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S
t-SNE

Left: Prior Work (DAFormer) Right: LangDA (Ours)
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Ouantitative Result

Method Backbone Unlabeled Target Data Prompt Description % mloU?

Source only ResNet-50 29.3
PODA [13] ResNet-50 Ve 29.5
ULDA [11] ResNet-50 v 30.8
Source only ResNet-101 294
ADVENT [3] ResNet-101 v 41.2
CBST [25] ResNet-101 ve 42.6
DACS [4] ResNet-101 v 48.3
CorDA [26] ResNet-101 ve 55.0
ProDA [27] ResNet-101 v 55.5
DAFormer [2] SegFormer v 61.1
LangDA (Ours) SegFormer v Ve 62.0 (+0.9%)
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R
What's Next?

More datasets: .
Day -> Night, More baselines & Ablation studies
Normal -> existing works
Adverse Weather
Y Y Y
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More Quantitative Result

Method Backbone Unlabeled Target Text Prompts % mloU 1
Data
Source only ResNet-50 293
PODAT [8] ResNet-50 v 29.5
ULDAT [40] ResNet-50 v 30.8
Source only ResNet-101 294
ADVENT [37] ResNet-101 v 41.2
CBST [43] ResNet-101 v 42.6
DACS [36] ResNet-101 v 48.3
CorDA [38] ResNet-101 v 55.0
ProDA [42] ResNet-101 v 55.5
DAFormer' [11] SegFormer v 61.1
LangDA (Ours) + DAFormer SegFormer v v 62.0
HRDA [12] SegFormer v 65.8
LangDA (Ours) + HRDA SegFormer v v 66.3
MIC [13] SegFormer v 67.3
CoPT [24] SegFormer v v 67.4
LangDA (Ours) + MIC SegFormer v v 70.0
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Qualitative Results: Synthetic -> Real

MIC [13] LangDA (Ours) Ground Truth
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Oualitative Results: Normal -> Adverse Weather

MIC [3] LangDA (Ours) Ground Truth
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Qualitative Results: Day -> night

Image MIC [3] LangDA (Ours) Ground Truth
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Questions?
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