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Modern Deep Learning Tasks

Is this a cat?
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Modern Deep Learning Tasks

— in What is there in the image
s this a cat?

and where?
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Modern Deep Learning Tasks

What is there in the image Which pixels belong to
and where? which object

Is this a cat?
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con PLEX SCENE: How SHOULD WE UNDERSTAND IT? Classification Detection Semantic Segmentation
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Classification: This is... a road?

“road”
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Detection

!
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Semantic Segmentation
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However... Manual Annotation &)
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Deep learning methods

Semi-supervised learning

Weakly-supervised learning

Transfer learning

Unsupervised domain adaptation

Learning from Synthetic Data

Zero-shot learning and few-shot learning

Active learning
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Deep learning methods

Semi-supervised learning

Weakly-supervised learning

Transfer learning

Unsupervised domain adaptation

Learning from Synthetic Data
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Transfer and Adaptation

= Learn on one task, transfer to another

= Learn on one labelled distribution, test on another distribution
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Transfer and Adaptation

= Learn on one task, transfer to another

= Learn on one labelled distribution, test on another distribution

Unsupervised Domain Adaptation
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Domain Gap

Different, but related data distributions
domain -> domain

T

= Different weather, lighting, locations
= Synthetic vs. real
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Domain Gap

Different, but related data distributions
domain -> domain

= Different weather, lighting, locations
= Synthetic vs. real
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Different, but related data distributions
domain -> domain

= Different weather, lighting, locations
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E—
Unsupervised Domain Adaptation (UDA)

Labeled Source Domain Unlabeled Target Domain
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Traditional UDA Method
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Source labels yg

Target image X
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B
Traditional UDA Method has plateau-ed in the last 2 yrs
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L ee—
Give the model more information?

This image depicts a snowy urban street
scene. Key details include:

1. Buildings: On the left, a mix of modern
apartment complexes and a bright
yellow building with the text "Restaurant
Piaton" is visible. On the right, there is a
church building with "Katholische
Kirche St. Katharina" written on its wall.

/

2
b‘\‘
=T

2. Street: The road agpears wet with
patches of snow and slush. Sidewalks are
snow-covered, with footprints visible.

3. Traffic: Traffic lights show green, and
overhead power lines suggest tram or
trolleybus infrastructure.

4. Weather: Overcast sky, snow on trees
and r.ooftolfs, indicating recent or
ongoing cold weather.
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Vision Language Models understands the road scene (world priors)

Please describe this image.

&) This image depicts a snowy urban street scene. Key details include:

1. Buildings: On the left, a mix of modern apartment complexes and a bright yellow building with

the text "Restaurant Piaton” is visible. On the right, there is a church building with "Katholische

Kirche St. Katharina” written on its wall.

. Street: The road appears wet with patches of snow and slush. Sidewalks are snow-covered, with

footprints visible.

. Traffic: Traffic lights show green, and overhead power lines suggest tram or trolleybus

infrastructure.

4. Weather: Overcast sky, snow on trees and rooftops, indicating recent or ongoing cold weather. W UNIVERSITY OF EACULTY OF
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Bringing in Language Information - LangDA (Ours)

"Context-aware |
> Caption -
___Generator

[ Source labels Ys

>y

Supervised "The image shows a busy city
Loss scene with road filled with

cars, motorcycles, and

Target image Xt
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A— bicycles. Sidewalk has
Vision Image-level | pedestrians and riders.
Encoder ____~| Alignment /‘ Buildings, fence, and pole are
0 ' in the background. Vegetation
EEMAUpdate is near the edge, and sky
above. People are scattered
\ across the scene, some near the
) road, others by the buildings.
Vision _/Unsupervised Some areas are unlabeled."
Encoder Loss
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Caption Generation with VLM

PRESENTATION TITLE

® Query (Image):
® Query (Text):

pixel locations.

The image depicts

Describe the image in detail for semantic segmentation tasks.
Be sure to include the class names | 'road’, "sidewalk’, "build-
ing’, ’wall’, ’fence’, ’pole’, ’vegetation’, ’sky’, ’person’,
'rider’, ’car’, 'motorcycle’, "bicycle’, "unlabeled’ ] and their

Eal] VLM: {VLM_CAPTION}

and pedestrians. There are several cars, including a blue car
parked on the side of the road, and a motorcycle. A bicycle is
also present in the scene. A person is riding a bicycle, while
another person is riding a motorcycle. There are numerous
people walking along the sidewalk, some of them carrying
handbags. A few pedestrians are also riding bicycles. The
street is lined with buildings, and there is a traffic light visible
in the scene. The sky is visible in the background, adding to
the urban atmosphere.

a busy city street with a mix of vehicles
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E—
Caption Refinement with LLM

Caption Refinement

@ System: You are a helpful assistant for refining and con-
densing detailed image caption descriptions for semantic seg-
mentation.

@ Query: Shorten the description to less than 77 tokens. Do
not use quotation marks or parentheses. Be sure to include the
class name {CLASS_NAMES) and their pixel locations. The
description is { VLM_CAPTION }

¢ LLM:
The image shows a busy city scene with road filled with cars,
motorcycles, and bicycles. Sidewalk has pedestrians and riders.
Buildings, fence, and pole are in the background. Vegetation
is near the edge, and sky above. People are scattered across

the scene, some near the road, others by the buildings. Some
areas are unlabeled.
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Align Image Text Features - Consistency Objective

"The image shows a busy city
scene with road filled with
cars, motorcycles, and
bicycles. Sidewalk has
pedestrians and riders.
Buildings, fence, and pole are
in the background. Vegetation
is near the edge, and sky
above. People are scattered
across the scene, some near the
road, others by the buildings.
Some areas are unlabeled."
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Qualitative Results: Synthetic-to-Real Adaptation

Image MIC [13] LanegDA (Ours) Ground Truth
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Qualitative Results: Normal-to-Adverse-weather Adaptation

MIC [3] LangDA (Ours) Ground Truth
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e—
Qualitative Results: Day-to-night Adaptation

Image MIC [3] LangDA (Ours) Ground Truth
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(a) Left: DAFormer [! 1], adaptation using only visual (b) Right: LangDA + DAFormer (Ours), adaptation using
both visual images and contextual language descriptions.
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Figure 9. t-SNE of DAFormer and LangDA (Ours) After aligning language and visual features, we observe more well-defined boundaries
and improved class clustering.
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Ouantitative Result

Method Backbone Unlabeled Target Text Prompts % mloU
Data
Source only ResNet-50 293
PODAT [8] ResNet-50 v 29.5
ULDAT [40] ResNet-50 v 30.8
Source only ResNet-101 294
ADVENT [37] ResNet-101 v 41.2
CBST [43] ResNet-101 v 42.6
DACS [36] ResNet-101 v 48.3
CorDA [38] ResNet-101 v 55.0
ProDA [42] ResNet-101 v 55.5
DAFormer! [11] SegFormer v 61.1
LangDA(Ours) + DAFormer SegFormer v v 62.0
HRDA [12] SegFormer v 65.8
LangDA (Ours) + HRDA SegFormer v v 66.3
MIC [13] SegFormer v 67.3
CoPT [24] SegFormer v v 67.4
LangDA (Ours) + MIC SegFormer v v 70.0
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Ablations

Table 6. Ablation on different prompting and aligning techniques on
Synthetic-to-Real adaptation benchmark: Synthia — Cityscapes.

Context-aware Image-level % mIoU?
Caption Generation  Alignment 0
1 v v 70.0
2 — v 68.7
3 v — 65.7
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Ablations

Table 7. Ablation on applying contextual scene description on
source only, target only, and source + target.

Image Captions % mloU?

Source only 70.0
Target only 69.1
Source + Target 68.0
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Questions?
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