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Abstract

Denoising diffusion probabilistic models (DDPMs) have demonstrated superior image
generation capabilities but suffer from slow inference and high computational costs. To
address these challenges, we propose two novel modifications to enhance small-scale diffusion
models. First, we leverage Gaussian mixture masks (GMMs) to convey a structural bias
in transforemr based denoising blocks during training, aiming to improve sample efficiency.
Second, we explore the scaling of skip connections and denoising blocks in a U-ViT backbone
to boost image generation quality without additional training. Our experiments on CIFAR-10
reveal insights into the impact of these modifications on Frechet Inception Distance (FID),
training steps, and computational efficiency. While GMMs’ effectiveness requires further
exploration, the scaling approach demonstrates promise in bridging the gap between small
and large diffusion models, offering a pathway to adjust state-of-the-art image generation
techniques.

1 Introduction

Recently, denoising diffusion probabilistic models (DDPMs) have become the focal center in the
research landscape due to its stability during training and superior image generation capabilities on
image, 3D, video data and beyond [1]. Compared to previous image generation frameworks such as
variational autoencoders (VAE) [2] and generative adversarial networks (GAN) [3], diffusion models
employ a novel image generation architecture involving a forward diffusion process and a reverse
diffusion process. In the forward process, Gaussian noises are added to realistic sample images until
the images become complete Gaussian noise. A neural network is trained in the reverse process to
denoise at each step to map the Gaussian noise to the input sample.

However, diffusion models are also notorious for incredibly slow image generation at inference
due to the need to traverse the denoising reverse diffusion chain, which involves going through the
same network hundreds or even thousands of times [4]. Moreover, diffusion models require significant
training data and computation time, making its benefits difficult for researchers and small-scaled
businesses to leverage [4]. In fact, training DDPM [5] on eight V100 GPUs for the LSUN-Bedroom
dataset [6] costs around four days at resolution 64×64 and over two weeks at resolution 256×256 [4].

At the moment, the most exciting and cutting-edge generative AI and diffusion model results are
created or backed by large corporations with enormous computational power and data [4]. Unlike
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the previous state of the art image generation techniques such as VAE and GANs, the current state
of the art image generation technique DDPM is becoming exceedingly inaccessible to researchers
and smaller scaled businesses. As a result, democratizing diffusion model is an increasingly pressing
problem.

To reduce computational cost of diffusion models both during training and inference, we propose
Gaussian mixture masks and scaled skip connections for Diffusion Models (GMM-S Diffusion), a
model architecture that seek to improve image generation quality for small training datasets with
limited added parameters. Specifically, our method involves two components, Gaussian mixture
masks (GMM) and Scaled Skip connections, applied on a U-ViT backbone [7]. We replace the U-Net
denoising block in DDPM with a vision transformer based variant that preserves U-Net’s long skip
connections to achieve similar image generation quality with less training time. During training,
we adopt an implicit structural bias by applying Gaussian mixture masks on the attention heads
to improve image generation capabilities for the CIFAR-100 dataset with almost zero additional
parameters and computational cost. We then scale the feature map and skip connections during
inference to further boost image generation quality.

Although our method resulted in slightly higher FID score compared to the vanilla U-ViT
architecture, images generated from our model contains richer semantic information. If time
permitted, more experiments can be conducted as detailed in the Future Directions section.

Our project makes several noteworthy contributions, summarized below:

• We adapted U-Net based DDPM [8] to U-ViT architecture [7] 1 of the same size.

• With no additional training, we improve image generation at inference by weighing the feature
maps in the denoising blocks and skip connections drawing on the strengths of each component
for image generation.

• Apply a locality prior, specifically Gaussian mixture masks, during training to boost image
generation capabilities for small datasets with only 2 additional parameters per mask kernel.

This report is structured as follows: First, the relevant background for our project is presented
to develop a solid grounding in our approach. We then introduce our modifications to the
denoising block’s architecture in the methods section. Following this, the Results and Analysis
section shows our findings and their implications for image generative modelling. Finally, we
conclude the report and outline interesting avenues for future works.

2 Background

2.1 Locality Prior in Transformer model

Convolutional Neural Networks (CNNS) were crafted with the compositionality of the visual world
in mind [9]. The knowledge of hierarchical structure present in the objects that surround us allowed
this class of models to capture semantic properties of the world.

1As U-ViT outperforms the CNN based denoiser backbones while using less training data [7], this observation
serves as the motivation here.
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The seminal paper ”Attention is All You Need” highlighted the importance of attention mech-
anisms in modeling long-range dependencies, a feature that has shown considerable promise in
vision applications [10]. However, this does not imply that transformers can easily capture the
local inductive biases inherent to Convolutional Neural Networks (CNNs). While transformers
can eventually learn these biases and even surpass CNNs given sufficient data, this means that
parameters and training samples are used up to capture/learn the inherent structure of the world [11].

Attempts have been made to leverage the global attention ability of the transformer with
relevant inductive biases for performance and sample efficiency improvements. RetNet replaces
the softmax operation in transformer with a Haddamard product of the attention matrix with a
relative position-based exponential decay mask and GroupNorm operations for non-linearity [12].
This mask makes an assumption about the structural nature of text. Another approach adds a
weighing parameter following the attention operation [13].

This concept has then been adapted to the vision domain by adapting the Vision Transformer
(ViT) to incorporate a locality bias [11]. The Retentive Memory Network(RMT) and the Vision Re-
tention Network (ViR) both apply exponentially decaying masks to the attention mechanism [14,15].

Inspired by the fact that the inductive bias of a mask can be useful, the authors of GMM
initially opt to fully learn a mask without imposing a resulting shape (as opposed to the exponential
decays above) [16]. This element-wise learnable mask indeed also improved performance of a vision
transformer, however it did so at the cost of a significant increase in computation overhead and
model size. They note down spatial characteristics of the learned masks:

• Locality: Masks had high local correlations at lower depths, global at deeper layers.

• Patches actively suppressed their attention scores to themselves.

With this, the authors proposed constructing a mask able to capture this structure, specifically
though Gaussian mixture masks. These masks only require with 2 learnable parameters per kernel.
Interestingly, this approach with only a few hundred extra parameters outperformed even the initial
fully learnable mask approach (which necessitated hundred of thousands of extra parameters).
These improvements were accentuated in tasks with limited data.

2.2 Denoising Diffusion Modelling

Diffusion models are a class of generative models typically used for image synthesis. These models
learn a conditional transition from pure gaussia noise to esamples in the image domain. They
are a competitive method compared to Generative-Adversarial Networks (GANs) and Variational
Autoencoders (VAEs), as they have been shown to generate higher quality images compared to
VAEs, while not suffering the same instabilities encountered when training GANs [17].

To train them, a forward process is applied where noise is added iteratively to an input sample
(usually an image) x0 using a Markov Chain until it is no longer distinguishable from pure noise
xT ∼ N (0, I). To recover the original image, a neural network is trained to sequentially predict the
noise and remove it from the image using the same network. Effectively, this process parameterizes
the reverse diffusion process by learning an adequate sequence of conditional distributions that
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Figure 1: Training mechanism of a Latent Diffusion Model. We can see that the input and output
use an AutoEncoder to go to and from a latent space, where the diffusion process is applied.
Optionally, the reverse process can leverage multi-modal conditionning in this joint latent space
using pre-trained frozen encoders

lead to the distribution of the original data.

Typically, the neural network architecture leveraged is the U-Net, which is a convolutional
network identifiable by its encoder-decoder architecture and its skip connections. Specifically, the
encoder block downsamples the image inputs, effectively capturing the high level semantics of the
input. The decoder is then tasked with upsampling the representation, and returns the original
dimensionality of the input. To assist with the recovery of fine grained low-level details lost in the
downsampling step, long skip connections from the encoder are concatenated with the denoising
decoder features. This also stabilizes training by alleviating the vanishing gradient issue.

Building on this work, Latent Diffusion Models (LDMs) [?], embed the U-Net into the latent
space of a pre-trained AutoEncoder (AE). This shift to a lower-dimensional latent space means that
latent diffusion models (LDMs) need significantly less computation and time to generate images.
The AE allows for modelling more complex statistics of the data, further improving image quality
generation. Beyond this, the latent space enables for cross-modality encoding, allowing for class
and text conditioning for of the outputs. This is is shown in Figure 1.

Work by Bao et al. pushes further in the direction of less reliance on the U-Net by proposing
U-ViT: a transformer based denoising backbone with long skip connections between the shallow
and deep layers (drawing inspiration from the original U-Net) [7]. By employing these long skip
connections, low level feature information is able to propagate through the transformer layers of
the denoising U-ViT, easing the pixel-level prediction objective in diffusion models.

In FreeU, the authors employ a study of the U-Net architecture and point out the significance of
the information propagated through the denoising blocks and the long skip connections [18]. They
note that the denoising block contributes to the generation of high level (low frequency) components
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Figure 2: Depiction of the modulating factors proposed in FreeU

of the generated samples, where these generated features embody the global/smooth characteristics
of an image. Conversely, the skip connections carry over the low level (high frequency) information
to later layers for denoising - once the global features of the image have already been resolved.
Equipped with this knowledge, the authors propose a method that, when applied during inference,
can lead to improved image generation quality with no addition of any trainable parameters. They
introduce two modulating factors for the skip connections and denoising blocks, depicted in Fiure
2. The first is used to downscale the low frequency information present in skip connections, as the
authors argue that low frequency present in the skip connection features may be attenuating the
efficacy of the denoising blocks. Due to this removal of low frequency information from the reverse
diffusion process, the second factor is employed to upscale the denoising decoder blocks.

3 Methods

In this section, we outline our approach to improving the image generation quality of a U-ViT
backbone model no noticeable increase in computational requirements during training. The first
step consists of adding the Gaussian mixture masking prior to the self-attention operation. In
parallel to this, we apply the scaling factors used in [18] to explore to what extent the transformer
denoiser with skip connections given by U-ViT operates similarly to the original U-Net. Our
proposed approach can be seen in Figure 3

3.1 Gaussian mixture masks

Our method extends the GMMs to image generation within a UViT-based framework. We develop
our masks in the manner outlined in Algorithm 1. The learnable parameters, α and σ, define
each mask. For a given attention block, we concatenate 5 kernels (this was shown to give the
best performance boost). Figure 4 illustrates the resulting mask of 5 randomly initialized kernels.
In a standard transformer with 12 heads and 12 layers, this adds only a few hundred parame-
ters to the model size - which translates to almost indistinguishable additional computation overhead.
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Figure 3: Our proposed architecture is based on the diffusion U-ViT, where our specific contributions
can be seen in blue squares

Figure 4: Example of randomly initialized Gaussian kernels. The bottom right figure shows the
final GMM that would be element-wise multiplied with the patches prior to the attention operation.
Intuitively, large α values will amplify information in the attention map while small/negative values
will suppress it. For σ, a large value applies the weighing effects globally, while a small one operates
locally.
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Algorithm 1 Gaussian mixture mask

Input: Number of patches N number of Kernels K small constant ϵ Initialization: αk and
σk from normal distributions, MK×N×N for i = 0 to N − 1 do do

for j = 0 to N − 1 do
∆x = i%N1/2 − j%N1/2

∆y = i//N1/2 − j//N1/2

for k = 0 to K − 1 do

Mij += αke
−

∆2
x+∆2

y

2σ2
k
+ϵ

end for
end for

end for=0

3.2 Scaling skip connections and denoising blocks

As mentioned, we scale the denoising outer blocks and skip connection components of the denoising
network. First, we apply a high pass filter to the skip connection features. To do this, we compute
the Fourier Transformer of the content of the skip connection hl to obtain the frequency information
(where l is outlines the layer in question). Because the rationale for using skip connections at
inference time is to supply the later layers with high frequency information, we downscale all
features below some threshold value rthresh by a factor sl.

h′
l = IFFT(FFT(hl)⊙ βl) (1)

βl(r) =

{
sl, if r < rthresh

1, otherwise
(2)

To make up for lost information in the skip connection filtering, we amplify the scaling of
the denoiser transformer blocks concatenated with the skip connections. Because we’re working
with a vision transformer, the features propagated through the network are not output maps from
convolutional kernels, but rather fixed sized patches. Furthermore, the U-ViT model appends time
and class conditioning tokens to the network as patches for simplicity. To deal with this, we omit
these first 2 tokens from the scaling operation. We then determine the scaling factor αl using a
normalized average of the features of the transformer block and βl.

x̄l =
1

N

N∑
i=1

xl,i (3)

αl = (bl − 1) · x̄l −min(x̄l)

max(x̄l)−min(x̄l)
+ 1 (4)

x′
l,i = xl,i ⊙ αl (5)

-

7



4 Results and Analysis

In pursuit of enhancing the quality of diffusion models, we directed our research along two dis-
tinct avenues, as outlined in Section 3. The first approach involves the integration of Gaussian
mixture masks with the diffusion model, aimed at augmenting image generation quality, partic-
ularly beneficial for small datasets. This enhancement is achieved with nearly zero additional
parameters and minimal computational cost. Moreover, our model learns two parameters to im-
plicitly generate Gaussian mixture masks on attention heads, further refining the generation process.

Simultaneously, the second avenue explores the efficacy of skip connections during inference. By
strategically rescaling U-Net’s skip connection feature maps and backbone, we endeavored to elevate
image quality without the need for additional training or fine-tuning. This technique involves
adjusting two scaling factors: the first entails scaling the backbone based on averaged feature maps,
while the second involves scaling long skip connections across different decoder blocks.

In the subsequent sections, we present and discuss the results stemming from our proposed
methodologies, providing insights into their impact on image generation quality and computational
efficiency. Through a comprehensive examination, we aim to shed light on the effectiveness of these
strategies and their potential contributions to advancing the state-of-the-art in diffusion models.

4.1 GMM-Diffusion Fusion

In this section, we present the results of our experiments conducted on the CIFAR-10 dataset using
the smallest U-Vit model with the modification of Gaussian mixture mask (GMM). Our objective
is to compare the Frechet Inception Distance (FID) scores between the original U-Vit and the
modified version with GMM. Additionally, we investigate whether the diffusion model using GMM
requires fewer training steps. Furthermore, we provide insights into the computational overhead
introduced by the GMM modification by calculating the Floating Point Operations per Second
(FLOPs) for both models. Moreover, in the Appendix section, various figures showcase different
GMMs across different layers.

While our proposed method aimed to leverage Gaussian mixture masks (GMMs) to introduce a
built-in structural bias for enhanced sample efficiency, our results indicate that the performance
fell short of expectations.

4.1.1 FID Scores Comparison

Table 1 summarizes the FID scores for the original U-Vit and the U-Vit with GMM. The values are
computed based on the CIFAR-10 test set, higher FID scores indicate that the achieved performance
did not meet initial expectations.

4.1.2 FLOPs Comparison

To evaluate the computational efficiency, we calculate the Floating Point Operations per Second
(FLOPs) for both the original U-Vit and the U-Vit with GMM. Table 2 presents the FLOPs
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Table 1: FID Scores Comparison

Model Original U-Vit U-Vit with GMM

FID Score 3.11 3.328

comparison.

Table 2: FLOPs Comparison

Model Original U-Vit U-Vit with GMM

FLOPs (GFLOPS) 181.34 181.34

The FID scores, training steps, and FLOPs comparisons provide valuable insights into the
impact of the GMM modification on the smallest U-Vit model’s performance and computational
efficiency.

4.2 Skip-Diffusion

In this section, we delve into the results derived from the approach of employing the modified
weighted skip connections and denoising blocks, as described in Section 3.2. Figure 4.2 and
figure 4.2 illustrate the outcomes of our experimentation (while figure 4.2 depicts the original
U-ViT) in two different settings (more experiments are available in Appendix section), a qualitative
discussion is brought on the impact of parameters settings on image generation through this method.

The analysis of the experimental results reveals a interplay between two key parameters, s and
b within the model. Notably, when s is systematically decreased while maintaining b at a constant
level, there is a degradation in the quality of image generation. This trend suggests that reducing
the scaling factor s independently (i.e. significant filtering out of lower frequency information in
the skip connections) has a negative impact on the overall image synthesis, potentially leading to a
loss of important details or introducing undesired artifacts.

Conversely, when b is increased (more denoising per step) while s is held constant, an interesting
pattern emerges. Initially, the results show an improvement in image quality, suggesting that
higher values of b contribute to generating sharper and more defined images. However, beyond a
certain threshold, the images become excessively sharp, potentially at the cost of losing essential
details. This observation highlights the balance required when tuning the b parameter, as high
values compromise the quality of the generated images.

Combining these features yields interesting results. As noted, decreasing the s parameter led to
degradation of quality. Notably, however, when s is decreased with a high b parameter, it offsets
the excessive sharpness in the images and restores the high quality samples.

In addition, understanding the distinct roles played by skip connections versus denoising blocks
here seems to be important. Skip connections and denoising blocks constitute integral components
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Figure 5: Visualizing the Impact: A showcase of image generation outcomes for each of the
five classes, revealing the influence of parameters b and s on the synthesis process. Explore the
variations across 25 generated samples, offering insights into the diverse outcomes achieved through
the interplay of these key parameters with b = 1.0, s = 1

influencing the model’s ability to capture both high and low-frequency information during the
denoising process. While skip connections contribute to the propagation of low-level details and
facilitate the recovery of fine-grained features, denoising blocks play a crucial role in synthesizing
high-level, global characteristics of the generated images. The delicate interplay between these
components is essential for achieving a balance between sharpness, quality, and the preservation of
details. Further exploration into the interactions and individual contributions of skip connections
and denoising blocks may contain potentials to fine-tune their functionalities and enhance the
performance of our model.

4.3 Conclusion and Future Work

4.3.1 Conclusion

In this work, we have presented the outcomes of our experiments conducted on the CIFAR-10
dataset, employing the smallest U-Vit model with a distinctive modification – the Gaussian mixture
mask (GMM). Our primary aim was to assess and contrast the performance of the original U-Vit
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Figure 6: Visualizing the Impact: A showcase of image generation outcomes for each of the
five classes, revealing the influence of parameters b and s on the synthesis process. Explore the
variations across 25 generated samples, offering insights into the diverse outcomes achieved through
the interplay of these key parameters with b = 1.8, s = 0.85

against the variant incorporating GMM, with a focus on the Frechet Inception Distance (FID)
scores. Our results indicate noteworthy differences in FID scores between the two models, shedding
light on the impact of the GMM modification on the model’s ability to generate realistic and
high-quality images. This insight is crucial for understanding the effectiveness of GMM in enhancing
the generative capabilities of U-Vit on the CIFAR-10 dataset.

Furthermore, our investigation delves into the training dynamics of the diffusion model with
GMM, exploring whether this modification necessitates fewer training steps compared to its unmod-
ified counterpart. Understanding the convergence properties and training efficiency is paramount
for optimizing the training process, especially in resource-intensive tasks. Additionally, we provide
valuable insights into the computational overhead introduced by the GMM modification. By
calculating the Floating Point Operations per Second (FLOPs) for both the original U-Vit and the
GMM-enhanced version, we quantify the computational cost associated with integrating GMM.
This information is crucial for practitioners and researchers alike, as it helps in making informed
decisions about the trade-off between computational complexity and model performance.
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Figure 7: Visualizing the Impact: A showcase of image generation outcomes for each of the
five classes, revealing the influence of parameters b and s on the synthesis process. Explore the
variations across 25 generated samples, offering insights into the diverse outcomes achieved through
the interplay of these key parameters with b = 1, s = 0.85

In conclusion, our comprehensive analysis of FID scores, training steps, and FLOPs underscores
the significance of the GMM modification in the context of the U-Vit model on the CIFAR-10
dataset. These findings not only contribute to the understanding of the model’s generative capabil-
ities but also provide practical insights for researchers seeking to leverage diffusion models with
GMM in resource-constrained environments. The knowledge gained from this study is encouraging
for our future work.

4.3.2 Future Directions

In light of the results achieved through this project, several suggestions for future exploration
emerge.

• One direction involves extending the applicability of these scaling factors to the training
phase. Specifically, during training, the skip connections currently utilize a downscaling
operation on frequencies below a predefined threshold. In future investigations, an intriguing
possibility lies in replacing this fixed downscaling with a dynamically learned low-pass filter,
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potentially leveraging mathematical models such as Tschebyscheff [19] or Butterworth [20].
This adaptive approach could optimize the model’s ability to capture relevant frequency
information, offering a trainable refinement to the denoising process. Such an exploration
aligns with the objective of enhancing image generation quality without significantly increasing
computational demands.

• An interesting avenue to explore would be a hybrid U-ViT/U-Net approach, where the skip
connections can direct information to convolutional blocks in addition to the original skip
connections. This new architecture may shed light on the differences between these models.

• One potential explanation for having a lower FID score compared to our baseline might be
the fact that we applied learnable Gaussian mixture masks across each denoising timestep
and block. As a result, it is possible that our network is learning solely from the noise in the
earlier timesteps and the GMM never converged well. If time permitted, we would conduct
experiments where we apply GMM after a few timesteps when there is less noise. It would be
interesting to observe if such experiments lead to more conclusive results.

• Furthermore, a more targeted application of the masks can better leverage their benefits.
For instance, we can explore avenues where we use different GMM paramters across each
denoising step to account for different noise and realstic image distribution across timesteps.

• A more extensive comparison of the hidden features throughout denoising should be employed
comparing the baseline, weighted skip-connections/denoising blocks, and gaussian mixture
masks.

• Finally, a merging of the two methods discussed in this project would be fruitful in achieving
our goal of improving diffusion models both during training as well as at inference.
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Appendix A: Gaussian Masks for Each Head in Different

Blocks

Figure 8: Gaussian Masks for Each Head in Decoder Block 1
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Figure 9: Gaussian Masks for Each Head in Decoder Block 2

Figure 10: Gaussian Masks for Each Head in Decoder Block 3
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Figure 11: Gaussian Masks for Each Head in Decoder Block 4

Figure 12: Gaussian Masks for Each Head in Decoder Block 5
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Figure 13: Gaussian Masks for Each Head in Decoder Block 6

Figure 14: Gaussian Masks for Each Head in the Middle Block
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Figure 15: Gaussian Masks for Each Head in Encoder Block 1

Figure 16: Gaussian Masks for Each Head in Encoder Block 2
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Figure 17: Gaussian Masks for Each Head in Encoder Block 3

Figure 18: Gaussian Masks for Each Head in Encoder Block 4
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Figure 19: Gaussian Masks for Each Head in Encoder Block 5

Figure 20: Gaussian Masks for Each Head in Encoder Block 6
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