
Stars, Galaxies or Quasars – Classifying
New Stellar Observations

Date of Submission: Dec 6th, 2022

Authors: Grigorii Bulava, Steven Cheng, Chang Liu, Harsh Shekhar

Course: STAT 441 Classification

Instructor: Yeying Zhu



Abstract
The goal of this project is to develop a model to classify new stellar object observations

accurately. We decided to use data on properties related to spectroscopy and discovery order of
stellar bodies. Specifically, the properties are Right Ascension Angle, Declination Angle, Red
Light and Green Light emissions, Near Infrared, Infrared and Ultraviolet radiation emissions,
Redshift, Modified Julian Date, Unique ID and Plate Number. After performing exploratory data
analysis and feature selection, we used KNN, Random Forest, and single and multi-layer Neural
Networks to classify stellar objects. We found Neural Networks and Random forest achieved
approximately 97% accuracy while KNN achieved only around 94% accuracy.

Introduction
Astrophotography is a rapidly advancing field. From blurry photos of Neptune in the

beginning of 2000s (NASA, 2022), NASA went on to obtain black hole images in the year of
2019 (NASA, 2019). On the other hand, despite all the advances in the field of astrophotography,
it still took 19.3 million dollars and over 5 years to photograph the black hole, so
astrophotography is still far from being cost-effective or practical on a large scale. Moreover,
NASA estimates that there are at least 100 billion stars in our galaxy, the Milky Way (NASA,
2015), and there are over 2 trillion (NASA, 2016) galaxies and 12.8 million quasars in the
observable universe (NASA, 2022). If humanity wants to map the entire sky, it is of the utmost
importance to develop methods that could assign a class to a stellar object accurately, quickly,
and economically.

Problem of Interest
In this study we are working with three stellar bodies: Stars, Galaxies, and Quasars – the

last one being a combination of a black hole and gas that spirals around this black hole at
incredible speeds, creating very strong luminosity (NASA, 2015). The goal is to train a model to
identify objects’ classes accurately. Our target accuracy rate is 95% since every percentage of
error means possible misclassification for millions of objects. In this study we want to explore
astrophotography data for stellar objects that was obtained quickly and economically, and to then
train a model that can assign the stellar objects’ class accurately. We removed arbitrary variables
such as run_ID that were not related to our study from the dataset. Below are eleven explanatory
variables that might provide useful information with the classification of an astronomical body:

1



Right Ascension Angle (alpha) –
object’s angular distance from the sun at
Vernal Equinox (daytime equal to
nighttime).

Declination angle (delta) – angle of the
object relative to the Celsius Equator
during the Vernal Equinox (daytime equal
nighttime).

Green Filter (g) and Red Filter (r) –
object’s green and red light wave
measurements (photometric system)

Near infrared Filter (i) – measure of the
object’s radiation that’s near to the infrared
light in the photometric system

Redshift – object’s increase in
wavelength based on distance, respective
frequency change

Ultraviolet Filter (u) – measure of the
object’s UV Radiation strength in the
photometric system. (3)

Infrared Filter (z) - measure of the
object’s infrared light in the photometric
system

MJD – Modified Julian Date, indicates
when a piece of SDSS data was taken.

Unique ID (spec_obj_id) – object’s
unique ID.

Plate – ID of the object’s plate, in SDSS

We only included variables that are scientifically relevant to our statistical analysis. For
example, we know Infrared radiation emitted by quasars and stars is drastically different (Xie,
Ho, Zhuang, & Shangguan, 2021). Generally, we expect distinct types of stellar bodies'
emissions to have different wave composition - and this is the reasoning behind the variables
g,r,i,z and u in our model. Some things are included as a measure of observation control: Right
Ascension Angle and Declination Angle represent the object’s position in the sky relative to
Earth, and variables MJD, Plate and Unique ID relate to the order and date of the object’s
classification. Finally, there is the variable Redshift, which is a measurement of how an object's
wavelength increases with distance (NASA, 2022).

Methodology
To approach this problem, we first take a look at our data by conducting an initial

exploratory data analysis (EDA). Then, we utilized Best Subset Selection and LASSO to select
the variables of importance for our classification model. Based on our EDA results, we
determined that K Nearest Neighbors, Random Forest and Neural Network are the best
techniques to classify our data. We fitted models using the three approaches and arrived at our
final model with the highest accuracy.

2



Exploratory Data Analysis
In Figure 1, we look at the distribution of

object classes. We observe that in our data,
approximately 60% of the observations are of
Galaxies, and the others are of Quasar (QSO) and
Stars each compromising 20% of our data.

In Figure 2, we look at the Normal QQ plot
for all numeric variables and we observe that all the
variables apart from alpha, delta, spec_obj_id, and
redshift are normally distributed. alpha, delta, and
spec_obj_id are uniformly distributed whereas
redshift has an exponential distribution. There also
does not seem to be a significant skew or kurtosis in
the normally distributed variables.

Figure 1: Normal qqplot of Numerical Variables

Looking at the correlation heatmap of
the numerical variables in Figure 3, apart from
the photometric variables, other variables such
as alpha, delta, spec_obj_id, and redshift do
not seem to be highly correlated to other
variables.

Figure 3: Correlation Heatmap of Numeric Variables

Figure 2: Normal QQ-plot of Numerical Variables

In Figure 4, we look closer at the correlation of the numerical variables. We observe that
alpha is trimodal which may be related to each of the three classes. We also observe that the
photometric variables do indeed have high correlation with each other. Most statistical practices

3



would call for the removal of these variables since multicollinearity usually indicates poor
quality data. It is, however, important to acknowledge that emissions of Ultraviolet, Green light,
Red light, Near-infrared and Infrared emissions all follow the rule of wavelength and frequency
being inversely proportional to each other (Qualitative Reasoning Group, Northwestern
University, 2022). Therefore, the object’s frequency will equally affect the wavelength of every
variable mentioned above, creating some seemingly very strong correlation and providing a
reason why it might be worth including these variables into our models.

Figure 4: Correlation Plot for Numerical Variables

In figure 5, we graph the scatter plot
for all variables against redshift color coded
by class and we find that the trimodal
distribution of alpha is not indicative of
class. We also observe that plotting any
variable against redshift coloured by class,
there is an obvious separation amongst
classes in these variables. We have plotted
redshift against three variables here, alpha,
u, and spec_obj_id, but the results are
similar for every other variable too.

Figure 5: Scatterplot of {alpha, u, spec_obj_id} vs redshift by class

Looking at the Kernel Density Estimate of ln(redshift) in Figure 7, we observe that the
values are different for different classes. We understand that the objects further away from us, the
more red shifted their wavelengths will be (The European Space Agency, 2022). Quasars are the

4



furthest away discovered objects till now (University of Oregon, 2022). We have observed a lot
of stars around our galaxy. Then there are galaxies further away from stars but closer than
quasars. The understanding of these distances combined with the working of redshift clearly
explains our observation in Figure 7. This also means that redshift may be an important
explanatory variable in our classification model.

Figure 6: Kernel Density Estimate of ln(redshift) by Class

Feature Selection
After cleaning the data and removing unrelated predictors, there are 11 covariates

remaining. However, considering the 10,000 data points we have, model training will be
computationally expensive. To reduce the time needed for model training and include only
essential covariates in our model, we used Best Subset selection and LASSO to further reduce
the feature space.

Best subset selection

After we performed best subset selection, we utilized BIC, Mallow’s CP, RSS, and𝑅2

adjusted value to evaluate our model and determine the most suitable feature space. BIC𝑅2

chose the a subset with 7 variables, Mallow’s CP and RSS chose the subset with 11 variables,

while adjusted and chose the subset with 1 variable. We decided not to follow adjusted𝑅2 𝑅2 𝑅2

and because these two methods chose a model with only one parameter and an underspecified𝑅2

model would produce biased results. Using the Law of Parsimony, we decided to use the subset
feature space obtained from BIC because it chose a model with 7 variables.

5



Figure 7: Best Subset Selection Result

  
Figure 8: Best Subset Selection using BIC

LASSO

Figure 9: Multinomial Deviance vs Log( ) Figure 10: Coefficient Response vs Log( ) for Galaxyλ λ

6



LASSO selected 7 variables as observed in Figure 11. During EDA (Figure 4), we found
that the photometric variables are highly correlated. LASSO does not do well with group
selection because LASSO tends to choose a variable arbitrarily out of the groups of correlated
variables rather than selecting the best variable. In addition, our goal is to infer new astronomical
observations and predict its category based on existing data we have. Best subset selection
usually results in models with better prediction accuracy, and LASSO is not as suitable for
inference. Therefore, we decided to use the feature space selected with the best subset selection.

Figure 11. Variables selected by LASSO

Model Fitting
From the exploratory data analysis, we found
that the underlying distribution of our data is
likely not normal (Figure 2). Therefore, LDA
and QDA are unsuitable for our data.
Furthermore, we found each covariate has
correlation with one another. Since similar
astronomical bodies have similar properties
and our covariates are all astronomical
measurements, our statistical results

correspond to the physical situation.

Considering the non-normality of our data and the correlation between variables from the
EDA section, we are fitting KNN, Random Forest, and Neural Nets to our data because these
models are nonparametric and make no assumption about our underlying model.

KNN

We first choose a suitable number
of neighbors for our KNN model.

From the graph here, we can
observe the number of neighbors
corresponding to the smallest test
error is k = 3. Therefore, we are
fitting a 3NN to our data.

Figure 12: Shrinkage vs Error of Val and Test

7



From here, we can see that KNN performed quite well on our testing set with the majority of
predictions being accurate. KNN has a 94.2% accuracy.

Note that for both Quasar and Stars, we are more likely to
predict them to be galaxies. This is because of the class
imbalance and there are many more galaxy data points than
quasar or star data points. Since KNN makes predictions
based on nearby data points, class imbalance has a large

impact on the accuracy of prediction.

Figure 13: KNN Confusion Matrix

Random Forest
We used 10 fold cross validation to fit our random forest model. After tuning the mtry

parameter with the number of trees, we found the optimum number of trees to be 6 with an
accuracy of 97.6%.

Figure 14: Random Forest Tuning and Confusion Matrix
Note that for our data, Random Forest performed much better than KNN. Although

Random Forest still did predict some of the objects “Quasar” and “Star” to be of “Galaxy” class,
and the class imbalance issue still exists, this problem affects Random Forest  much less than
KNN because Random Forest automatically balances sets of the data when one class is more
frequent than other classes.

Neural Networks
Firstly, we consider why a neural networks model would be chosen for the star

classification problem. All covariates are shown to be important in the variable selection process,
so there are 11 variables with different levels of interaction; this complex balance may be
captured by an equally complicated neural network. Despite covariates' distribution and scaling
varying a lot, neural networks can handle this well by standardization. Additionally, the large
sample size is a necessity for training neural networks to be powerful predictors, which is
important when a small error rate still results in a large number of misclassifications.

8



We first fit single-layer neural networks, using the ‘nnet’ package (Venebles, 2002), see
Appendix A for the network models. The single-layer neural networks approaches utilized were
built upon each other in order: single-repetition, tuning size, tuning shrinkage, multiple
repetition, and bagging. Additionally, the ‘caret’ library (Kuhn, 2022) was used to tune a
single-layer neural network.

Figure 15: Size vs Error of Val and Test Figure 16: Shrinkage vs Error of Val and Test

Size is the number of nodes in the single-layer. Too few nodes restricts model flexibility
to capture nonlinearities in data, while too many can lead to overfitting (Hastie, 2009, p. 400).
The optimal size was found to be 2, which is not too complex. Shrinkage is a form of model
regularization used to prevent overfitting and is combined with size to shrink weights down. In
theory, larger sized models are better when properly regularized (James, 2013, p. 438). However,
computational bounds and diminishing returns enforce more practical limits. Our optimal
shrinkage of 0.0004 was on our lower end. This makes sense when considering that the number
of coefficients in the size 2 model is dwarfed by the training set size.

Model: Hidden Layers x Nodes Number of Coefficients

2 x 1 33

3 x 5 138

5 x 5 198

Table 1: Relation between product Hidden Layers x Nodes vs Coefficients #

Our approach is simplified, but flawed, in that first the optimal size is found, then the
optimal shrinkage for that size is found. A better approach would be to do a grid search with
multiple size and shrinkage combinations, which is seen with the ‘caret’ trained model.
Appendix B features a caret boxplot of how test error varies with model size and shrinkage.

9



Another consideration in the fitting of neural networks is high variance, which can be
traced to how neural networks tend to local minima due to the nonconvex nature of the objective
function (James, 2013, p. 434). Thus, various starting points lead to various solutions. A solution
is to have multiple repetitions, and take the majority  of the repetitions as the predicted class.
Another approach is to apply bagging, which has the advantage of avoiding overfitting. A further
regularization technique, which we do not explore, is dropout learning, which parallels random
forests. We fitted models of the single layer, size then shrinkage optimized neural network with
100 repetitions and 100 bootstrap repetitions. The number of repetitions itself could also be
treated as a tuning parameter.

Figure 17: Test Errors over repetitions without bootstrap sampling on the left. With bootstrap sampling on the right.

We also explored multi-layer neural networks, fitted from the ‘neuralnet’ package
(Wright, 2020), see Appendix B. We fitted 2 layers by 5 nodes over 3 repetitions, 3 layers by 5
nodes over 2 repetitions, and 5 layers by 5 nodes over 1 repetition. The advantage of a
multi-layer neural network is that they are easier to train compared with a comparable
single-layer neural network. Shrinkage, size, number of layers, and number of repetitions can be
tuned as well, through the ‘caret’ package, but is not explored here due to computational bounds.

10



Neural Networks - Model Results

Model Test Error Run Time (s)

Single layer 0.0508 ~1.03

Tuned size then shrinkage 0.0332 ~203.38

>Repeated 100 times 0.0304 ~145.97

>Bagged 100 times 0.03 ~145.99

Single layer ‘caret’ tuned 0.0256 476.09

Multi-layer, 2 by 5, 3 reps 0.0276 65.49

Multi-layer, 3 by 5, 2 reps 0.03 54.13

Multi-layer, 5 by 5, 1 rep 0.0276 204.6

Table 2: Test Error and Runtime for Neural Network Models. Run times with leading tilde are approximate.

We notice that the single layer model which is properly tuned can perform as well as the
multi-layer models, as in An Introduction to Statistical Learning (James, 2013, p. 407). However,
a comparably accurate multi-layer model can be fitted much faster. Additionally, we don’t see
noticeable improvements between the multi-layer models, although the 5 by 5 model takes
considerably more time despite less repetitions. The multi-layer models are not shrinkage
regularized, which should improve the performance of the larger models.

Looking at our confusion matrices, the single layer models versus the caret tuned and
multilayer models differ in their types of errors, see Appendix C. The single layer models do not
falsely classify galaxies as stars, but are less accurate overall, while the multi-layer models do
falsely classify galaxies as stars.

11



Conclusion
After performing feature selection, we noticed that g, r, i, z, spec_obj_ID, MJD are the

variables of importance related to the class of stellar objects. Hence, we utilized these covariates
as our reduced feature space for later modelling.

For our model training, we obtained some highly accurate models, competent enough to
classify stellar objects with approximately 97% accuracy. Models that have performed especially
well are Random Forest, Single layer “caret” tuned Neural Network, and Multi-layer, 5 by 5, 1
repetition Neural Network. These models all were able to obtain accuracy rates more than 97%.
Even our KNN model with the lowest accuracy is still over 94% accurate. Overall, employing
the Law of Parsimony, it can be concluded that the Random Forest model is best suited for
classifying new stellar observations because it is highly accurate, not very computationally
expensive and relatively simple to interpret.

Model Accuracy

KNN 94.2%

Random Forest 97.6%

Single Layer Caret Tuned Neural Network 97.44%

Multi-Layer, 2 by 5, Neural Network 97.24%
Table 3: Model Performance

Contributions
Grigorii was involved in helping find the dataset of use, research to help explain the EDA

and analysis, and editing the document. Harsh was involved in helping find the dataset, forming
the research question, and the EDA. Chang was involved in feature selection using Best Subset
and LASSO, as well as KNN, and Random Forest. Steven was involved in implementing neural
nets and research to help explain the findings. Everyone assisted each other with their parts
whenever necessary and we all believe everyone had an equal contribution in this project.

12



References

Beck MW (2018). “NeuralNetTools: Visualization and Analysis Tools for Neural Networks.”
Journal of Statistical Software, 85(11), 1–20. doi:10.18637/jss.v085.i11.

Hastie, Tibshirani, R., Friedman, J. H., & Friedman, J. H. (Jerome H. . (2009). The elements of
statistical learning data mining, inference, and prediction (2nd ed.). Springer.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013) An Introduction to Statistical
Learning with applications in R, https://www.statlearning.com, Springer-Verlag, New York

Kuhn, M. et al. (2022). Classification and Regression Training R package. GitHub. Retrieved
December 4, 2022, from https://github.com/topepo/caret/.

NASA. (2015, July 22). How Many Stars in the Milky Way? Retrieved from NASA:
https://asd.gsfc.nasa.gov/blueshift/index.php/2015/07/22/how-many-stars-in-the-milky-way/

NASA. (2015, December 11). Quasar (kway zar). Retrieved from NASA:
https://www.nasa.gov/audience/forstudents/k-4/dictionary/Quasar.html

NASA. (2016, October 13). Hubble Reveals Observable Universe Contains 10 Times More
Galaxies Than Previously Thought. Retrieved from NASA:
https://www.nasa.gov/feature/goddard/2016/hubble-reveals-observable-universe-contains-10-tim
es-more-galaxies-than-previously-thought

NASA. (2019, April 10). Black Hole Image Makes History; NASA Telescopes Coordinated
Observations. Retrieved from NASA:
https://www.nasa.gov/mission_pages/chandra/news/black-hole-image-makes-history

NASA. (2022, December 5). APOD: 2000 February 18 - Neptune through Adaptive Optics.
Retrieved from Pinterest: https://www.pinterest.ca/pin/247205467018974272/

NASA. (2022, December 5). How Many Quasars Are There? Retrieved from NASA:
https://spacemath.gsfc.nasa.gov/Calculus/6Page107.pdf

Qualitative Reasoning Group, Northwestern University. (2022, December 5). How are frequency
and wavelength related? Retrieved from Northwestern University:

13

https://github.com/topepo/caret/


https://www.qrg.northwestern.edu/projects/vss/docs/communications/2-how-are-frequency-and-
wavelength-related.html

The European Space Agency. (2022, December 5). What is 'red shift'? Retrieved from The
European Space Agency:
https://www.esa.int/Science_Exploration/Space_Science/What_is_red_shift#:~:text=Ever%20sin
ce%201929%2C%20when%20Edwin,is%20%27red%2Dshifted%27.

University of Oregon. (2022, December 4). Quasars. Retrieved from University of Oregon:
http://abyss.uoregon.edu/~js/cosmo/lectures/lec12.html#:~:text=In%20the%201930%27s%2C%
20Edwin%20Hubble,farthest%20objects%20detected%20were%20quasars.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S, Fourth edition. Springer,
New York. ISBN 0-387-95457-0, https://www.stats.ox.ac.uk/pub/MASS4/.

Wright, M. N. et al. (2020). neuralnet: Training of Neural Networks. GitHub. Retrieved
December 4, 2022, from https://github.com/bips-hb/neuralnet.

NASA. (2022, December 6). Redshift and Hubble's Law. Retrieved from Star Child:
https://starchild.gsfc.nasa.gov/docs/StarChild/questions/redshift.html

Xie, Y., Ho, L. C., Zhuang, M.-Y., & Shangguan, J. (2021, April 5). The Infrared Emission and
Vigorous Star Formation of Low-redshift Quasars. The Astrophysical Journal, 124.
doi:10.3847/1538-4357/abe404

14

https://www.stats.ox.ac.uk/pub/MASS4/
https://github.com/bips-hb/neuralnet


Appendix A: Neural Network Plots

Line thickness indicates weight magnitude. Black indicates positive weights whilst blue indicates
negative weights. Created using the NeuralNetTools library (Beck, 2018).

Single Layer

Single Layer - Tuned Size then Shrinkage

15



Single Layer Caret

Multilayer -  2 by 5

16



Multilayer - 3 by 5

Multilayer - 5 by 5

17



Appendix B - Boxplot of Neural Network Tuning Parameters

Left is a boxplot of the “Caret” Size vs Error. Right is a boxplot of the “Caret” Shrinkage vs
Error.

18



Appendix C - Neural Network Confusion Matrices

Single Layer Neural Net Single Layer with Tuned Size then Shrinkage

Single Layer with Repetition Single Layer with Bagging

Single Layer Caret Multilayer 2 by 5 Neural Net

Multilayer 3 by 5 Multilayer 5 by 5

19



Appendix D: EDA

set.seed(1)
sc<-read.csv("C:/Users/harsh/Desktop/442_Final_Project/star_classification.csv")

df<-sc[c(2,3,4,5,6,7,8,13,14,15,16,17)]
df$class<-as.factor(df$class)
num_of_samples = 10000
sample_rows <- sample(1:nrow(sc), num_of_samples)
df<-df[sample_rows,]

Figure 1 and Figure 7

class_percentage<- summary(factor(df$class))*100/length(df$class)
b1<-ggplot(df,aes(x=class,colour=class,fill=class))+geom_bar() +

scale_fill_discrete(name="Percentage Composition",breaks = c("GALAXY", "QSO", "STAR"),
labels= c("GALAXY (59.18%)", "QSO (19.32%)", "STAR (21.5%)")) ## Figure 1

b2<-ggplot(df,aes(x=log(redshift),fill=class,colour=class)) +geom_density(alpha=0.2) ##Figure 7
b3<-ggplot(df,aes(x=alpha,fill=class,colour=class)) +geom_density(alpha=0.2)
b4<-ggplot(df,aes(x=delta,fill=class,colour=class)) +geom_density(alpha=0.2)
b5<-ggplot(df,aes(x=plate,fill=class,colour=class)) +geom_density(alpha=0.2)
b6<-ggplot(df,aes(x=u,fill=class,colour=class)) +geom_density(alpha=0.2)
#grid.arrange(b1,b2,b3,b4,b5,b6,ncol=3)

Figure 2 and Figure 4

numeric_df<-df[c(1,2,3,4,5,6,7,8,10)]
pairs.panels(numeric_df) ## Figure 4
par(mfrow=c(3,3))
for (i in 1:ncol(numeric_df)){

qqnorm(numeric_df[,i], main= c("Normal Q-Q Plot for:", names(numeric_df)[i]))
} ## Figure 2
par(mfrow=c(1,1))

Figure 3

M<-cor(numeric_df)
corrplot(M,method="color")

Figure 6

p1<-ggplot(df,aes(x=alpha,y=log(redshift),colour=class))+geom_point()
p2<-ggplot(df,aes(x=delta,y=log(redshift),colour=class))+geom_point()
p3<-ggplot(df,aes(x=u,y=redshift,colour=class))+geom_point()
p4<-ggplot(df,aes(x=g,y=log(redshift),colour=class))+geom_point()
p5<-ggplot(df,aes(x=r,y=log(redshift),colour=class))+geom_point()

1



p6<-ggplot(df,aes(x=i,y=log(redshift),colour=class))+geom_point()
p7<-ggplot(df,aes(x=z,y=log(redshift),colour=class))+geom_point()
p8<-ggplot(df,aes(x=spec_obj_ID,y=log(redshift),colour=class))+geom_point()
p9<-ggplot(df,aes(x=plate,y=log(redshift),colour=class))+geom_point()
p10<-ggplot(df,aes(x=MJD,y=log(redshift),colour=class))+geom_point()
#arrange<-grid.arrange(p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,ncol=5) # Zoom to see clearly, very interesting

2



Appendix E: Feature Selection, KNN and Random Forest R Code
knitr::opts_chunk$set(echo = TRUE, eval=FALSE)
library(leaps)
library(glmnet)

## Loading required package: Matrix

## Loaded glmnet 4.1-4
library(caret)

## Loading required package: ggplot2

## Loading required package: lattice
library(randomForest)

## randomForest 4.7-1.1

## Type rfNews() to see new features/changes/bug fixes.

##
## Attaching package: 'randomForest'

## The following object is masked from 'package:ggplot2':
##
## margin
library(nnet)

star = read.csv("star_classification.csv")
summary(factor(star$class))
num_of_samples = 10000
sample_rows <- sample(1:nrow(star), num_of_samples)

star <- star[c(2,3,4,5,6,7,8,13,14,15,16,17)]
star <- star[sample_rows, ]

star$class <- factor(star$class)
summary(star$class)

Feature Selection

set.seed(1)
head(star)
train = sample(nrow(star), nrow(star)*0.8)
star.train = star[train,]
star.test = star[-train,]

regfit.full <- regsubsets(factor(class)~., star.train)
reg.summary <- summary(regfit.full)
reg.summary
print("The number of variables for the best subset is: ")
which.min(reg.summary$bic)
which.min(reg.summary$cp)
which.min(reg.summary$rss)
which.min(reg.summary$adjr2)

1



which.min(reg.summary$rsq)
plot(reg.summary$bic, xlab = "Number of Variables",
ylab = "BIC", main = "Feature selection", type = "l")
points(7, reg.summary$bic[7], col = "green", cex = 2, pch = 1)

print("The coefficients and corresponding values are:")
coeff <- coef(regfit.full, 7)
print(coeff)

LASSO

star.train$class <- relevel(star.train$class, ref = "STAR")
x = model.matrix(class~., data = star.train)[, -1]
x_test = model.matrix(class~., data = star.test)[, -1]
y_test = star.test$class
y = star.train$class

grid =10ˆseq(-2, 3, length=100)
lasso.model = glmnet(x, y, alpha = 1 , lambda = grid, family = "multinomial")
plot(lasso.model, xvar = "lambda" , label = TRUE)
plot(lasso.model$lambda, lasso.model$df, xlab = "Lambda", ylab = "Model Size")

cv.fit = cv.glmnet(x , y, alpha = 1 , nfolds = 10, lambda = grid, family = "multinomial",
type.multinomial = "grouped", standardize = TRUE)

coef(cv.fit)

plot(cv.fit)
bestlambda = cv.fit$lambda.min

print("The coefficients for lambda.min are:")
coef(cv.fit, s = "lambda.min")

print("The coefficients for lambda.1se are:")
oneselamda = cv.fit$lambda.1se
coef(cv.fit, s = "lambda.1se")

cv.fit
print("The test error using lambda.min is: ")
pred = predict(cv.fit, newx = x_test, s = "lambda.min" )

print("The test error using lambda.1se is: ")
pred = predict(cv.fit, newx = x_test, s = "lambda.1se" )

KNN

library(class)
knn.train_x = star.train[c("g", "i", "z", "spec_obj_ID", "redshift", "MJD")]
knn.test_x = star.test[c("g", "i", "z", "spec_obj_ID", "redshift", "MJD")]

num_test_iter = 50
testerror.knn = rep(NA, num_test_iter)

2



for (j in 1:num_test_iter) {
set.seed(441)
knn.pred = knn(scale(data.frame(knn.train_x)), scale(data.frame(knn.test_x)),

star.train$class, k=j, prob=TRUE)
testerror.knn[j] = mean(knn.pred != star.test$class)

}

plot(testerror.knn, xlab = "Number of Neighbors",
ylab = "Test Error", main = "Choosing Suitable k", type = "l")
which.min(testerror.knn)
knn.pred= knn(scale(data.frame(knn.train_x)), scale(data.frame(knn.test_x)),

star.train$class, k=3, prob=TRUE)
confusionMatrix(knn.pred, star.test$class)$table

summary(factor(star$class))

RF

rf.model <- train(class~., data = star.train, method = 'rf',
trControl = trainControl(method = 'cv', number = 10))

rf.model
plot(rf.model, main="Tuning Random Forest", ylab="Accuracy (cross validated)",

xlab = "Number of trees (mtry parameter)")
rf.model$importance
rf.pred <- predict(rf.model, newdata = star.test)
confusionMatrix(factor(rf.pred), factor(star.test$class))

3



Appendix F: Neural Networks R Code

# Neural Networks
library(nnet)

# Create training, validation, and test sets
set.seed(1)
trainSet = df[1:5000,]
validSet = df[5001:7500,]
testSet = df[7501:10000,]

# Rescale variables (even categorical) to have (mean,sd)=(0,1)
dfscaled = as.matrix(df[,-9])

for (i in 1:ncol(dfscaled)) {
mx_mean = mean(dfscaled[,i])
mx_sd = sd(dfscaled[,i])
dfscaled[,i] = (dfscaled[,i]-mx_mean)/mx_sd

}

trainMx = dfscaled[1:5000,]
validMx = dfscaled[5001:7500,]
testMx = dfscaled[7501:10000,]

# Responses for SOFTMAX classification must be matrix of indicators
# for each category
# Created by class.ind()

trainY = class.ind(trainSet[,9])
validY = class.ind(validSet[,9])
testY = class.ind(testSet[,9])

# Single Hidden Layer regression
# Classification: "softmax=true"
# No shrinkage and single node
set.seed(1)
nn.1.0 = nnet(x=trainMx, y=trainY, size=1, maxit=1000, softmax=TRUE)
# Test set error
predTest.1.0 = predict(nn.1.0, newdata=testMx, type="class")
testMisclass.1.0 <- mean(ifelse(predTest.1.0 == as.factor(testSet$class),

yes=0, no=1))

# Use 2 tuning parameters: decay (shrinkage) and size
# Number of Units: "size=" more units give more flexibility in model,
# but more likelihood to overfit
sizes = seq(from=1,to=20)
nn.size.errs = sapply(sizes, function(s){

set.seed(1)
p = nnet(x=trainMx, y=trainY, size=s, maxit=1000, softmax=TRUE)
predValid = predict(p, newdata=validMx, type="class")
validErr = mean(ifelse(predValid == as.factor(validSet$class), yes=0, no=1))
predTest = predict(p, newdata=testMx, type="class")
testErr = mean(ifelse(predTest == as.factor(testSet$class), yes=0, no=1))
return(list(validErr = validErr, testErr = testErr))

1



})
plot(sizes,nn.size.errs[1,],main="Size vs Error",xlab="Size",

ylab="Err",col="blue",type="l", ylim= c(0.025,0.06))
points(sizes,nn.size.errs[2,],type="l",col="green")
legend("bottomright",legend=c("Val.","Test"),col=c("blue","green"),lty=c(1,1))

# Select optimal size
optSize = sizes[which.min(unlist(nn.size.errs[1,]))]
set.seed(1)
nn.size.opt = nnet(x=trainMx, y=trainY, size=optSize, maxit=1000, softmax=TRUE)
nn.size.opt.predTest = predict(nn.size.opt, newdata=testMx, type="class")

# Optimization: adding shrinkage
# Shrinkage: "decay=" value from [0.0001,0.1]
# Only 25 values tested due to computational bounds
decay = seq(from=0.0001,to=0.1,length.out=25)
nn.shrinkage.errs = sapply(decay, function(d){

set.seed(1)
p = nnet(x=trainMx, y=trainY, size=optSize, decay=d, maxit=1000, softmax=TRUE)
predValid = predict(p, newdata=validMx, type="class")
validErr = mean(ifelse(predValid == as.factor(validSet$class), yes=0, no=1))
predTest = predict(p, newdata=testMx, type="class")
testErr = mean(ifelse(predTest == as.factor(testSet$class), yes=0, no=1))
return(list(validErr = validErr, testErr = testErr))

})
# Plot Shrinkage vs Error
plot(decay,nn.shrinkage.errs[1,],main="Shrinkage vs Error",xlab="Shrinkage",

ylab="Err",col="blue",type="l",)
points(decay,nn.shrinkage.errs[2,],type="l",col="green")
legend("bottomright",legend=c("Val.","Test"),col=c("blue","green"),lty=c(1,1))

# Select decay to be the minimum from our validation error
optDecay = decay[which.min(unlist(nn.shrinkage.errs[1,]))]
set.seed(1)
nn.shrinkage.opt = nnet(x=trainMx, y=trainY, size=optSize, decay=optDecay,

maxit=1000, softmax=TRUE)
nn.shrinkage.opt.predTest = predict(nn.shrinkage.opt, newdata=testMx,

type="class")

# Repetition: required to adjust for fact that local minimums and possibility
# for overfitting can occur given various random starting weights
# Takes majority prediction
set.seed(1)
nn.repeat.predictors = lapply(seq(1,100),function(i){

nnet(x=trainMx, y=trainY, size=optSize, decay=optDecay, maxit=1000,
softmax=TRUE)

})
nn.repeat.predictions = sapply(nn.repeat.predictors, function(p){

predTest = unlist(predict(p, newdata=testMx, type="class"))
})

# Plot test errors of all repetitions
nn.repeat.errors = apply(nn.repeat.predictions, MARGIN = 2, function(x){

2



mean(ifelse(x == as.factor(testSet$class), yes=0, no=1))
})
plot(seq(1,100), nn.repeat.errors, main="Test Errors over Repetitions",

xlab="Iteration", ylab="Test Error", pch=20)

# Take Majority Prediction
nn.repeat.class = apply(nn.repeat.predictions, MARGIN = 1, function(x){

uniquex = unique(x)
uniquex[which.max(tabulate(match(x,uniquex)))]

})
testErr.repeat = mean(ifelse(nn.repeat.class == as.factor(testSet$class),

yes=0, no=1))

# Bagging: Alternative to repetition, creates different samples each time
set.seed(1)
nn.bagging.predictors = lapply(seq(1,100),function(i){

trainSample = sample(nrow(trainSet),nrow(trainSet),replace = TRUE)
bagTrainMx = dfscaled[trainSample,]
bagTrainY = class.ind(trainSet[trainSample,9])
nnet(x=bagTrainMx, y=bagTrainY, size=optSize, decay=optDecay, maxit=1000,

softmax=TRUE)
})
nn.bagging.predictions = sapply(nn.bagging.predictors, function(p){

predTest = unlist(predict(p, newdata=testMx, type="class"))
})

# Plot test errors of all repetitions
nn.bagging.errors = apply(nn.bagging.predictions, MARGIN = 2, function(x){

mean(ifelse(x == as.factor(testSet$class), yes=0, no=1))
})
plot(seq(1,100), nn.bagging.errors, main="Test Errors over Bagging",

xlab="Iteration", ylab="Test Error", pch=20)

# Take Majority Prediction
nn.bagging.class = apply(nn.bagging.predictions, MARGIN = 1, function(x){

uniquex = unique(x)
uniquex[which.max(tabulate(match(x,uniquex)))]

})
testErr.bagging = mean(ifelse(nn.bagging.class == as.factor(testSet$class),

yes=0, no=1))

# Try grid search with caret library
library(caret)
set.seed(1)
tuned.nnet <- caret::train(x=trainSet[,-9], y=trainSet[,9], method="nnet",

preProcess="range", trace=FALSE,
tuneGrid=expand.grid(.size=c(1,5,10,15),

.decay=c(0,0.001,0.01,0.1)))

tuned.nnet$results[order(-tuned.nnet$results[,3]),]
tuned.nnet$bestTune

# Try boxplots to see variability of the two tuning parameters

3



x11(h=7, w=10)
par(mfrow=c(1,2))
boxplot((1-Accuracy) ~ size, data=tuned.nnet$results,

main = "Size versus Error")
boxplot((1-Accuracy) ~ decay, data=tuned.nnet$results,

main = "Shrinkage versus Error")

# We try NN with the bestTune parameters from grid search
set.seed(1)
nn.caret = nnet(x=trainMx, y=trainY, size=tuned.nnet$bestTune$size, maxit=1000,

decay=tuned.nnet$bestTune$decay, softmax=TRUE)
nn.caret.pred = predict(nn.caret, newdata=testMx, type="class")

table(nn.caret.pred, as.factor(testSet$class), dnn=c("Predicted","Observed"))
misclass.caret <- mean(ifelse(nn.caret.pred == as.factor(testSet$class),

yes=0, no=1))

# Multilayer neural networks using neuralnet package
library(neuralnet)

trainData = cbind(trainY,trainMx)
nnFormula = as.formula(paste("GALAXY + QSO + STAR ~",

paste(names(trainSet[,-9]), collapse = " + ")))

# 2 Layer x 5 Nodes
set.seed(1)
neural.3 = neuralnet(nnFormula, trainData, hidden=c(5,5), rep=3, err.fct="sse",

act.fct="logistic", threshold = 1, stepmax = 10000,
lifesign = 'minimal', linear.output=FALSE)

nn.fancy.3.preds = compute(neural.3,testMx)$net.result
colnames(nn.fancy.3.preds) = c("GALAXY", "QSO", "STAR")
nn.fancy.3.class = data.frame("class" =

ifelse(max.col(nn.fancy.3.preds[ ,1:3])==
1,"GALAXY",

ifelse(max.col(nn.fancy.3.preds[ ,1:3])==
2, "QSO", "STAR")))

# Confusion Matrix
caret::confusionMatrix(as.factor(testSet[,9]),as.factor(nn.fancy.3.class[,1]))
# Test Error
misclass.fancy.3 <- mean(ifelse(nn.fancy.3.class[,1] == as.factor(testSet$class), yes=0, no=1))

# 3 Layer x 5 Nodes
set.seed(1)
neural.4 = neuralnet(nnFormula, trainData, hidden=c(5,5,5), rep=2,

err.fct="sse", act.fct="logistic", threshold = 1,
stepmax = 10000, lifesign = 'minimal', linear.output=FALSE)

nn.fancy.4.preds = compute(neural.4,testMx)$net.result
colnames(nn.fancy.4.preds) = c("GALAXY", "QSO", "STAR")
nn.fancy.4.class = data.frame("class"=ifelse(max.col(nn.fancy.4.preds[ ,1:3])==

1, "GALAXY",
ifelse(max.col(nn.fancy.4.preds[ ,1:3])==

4



2,"QSO", "STAR")))
# Confusion Matrix
caret::confusionMatrix(as.factor(testSet[,9]),as.factor(nn.fancy.4.class[,1]))
# Test Error
misclass.fancy.4 <- mean(ifelse(nn.fancy.4.class[,1] ==

as.factor(testSet$class), yes=0, no=1))

# 5 Layer x 5 Nodes
set.seed(1)
neural.5 = neuralnet(nnFormula, trainData, hidden=c(5,5,5,5,5), rep=1,

err.fct="sse", act.fct="logistic", threshold = 1,
stepmax = 20000, lifesign = 'minimal', linear.output=FALSE)

nn.fancy.5.preds = compute(neural.5,testMx)$net.result
colnames(nn.fancy.5.preds) = c("GALAXY", "QSO", "STAR")
nn.fancy.5.class = data.frame("class" = ifelse(max.col(nn.fancy.5.preds[ ,1:3])

==1, "GALAXY",
ifelse(max.col(nn.fancy.5.preds[ ,1:3])==

2, "QSO", "STAR")))
# Confusion Matrix
caret::confusionMatrix(as.factor(testSet[,9]),as.factor(nn.fancy.5.class[,1]))
# Test Error
misclass.fancy.5 <- mean(ifelse(nn.fancy.5.class[,1] == as.factor(testSet$class)

, yes=0, no=1))
# Comparison of models:
# Single Layer, Single Layer w/optimal size, Single Layer
# w/optimal shrinkage and size, Single Layer bagging, Caret Single Layer,
# 2 Layer x 5 Nodes, 3 Layer x 5 Nodes, 5 Layer x 5 Nodes

# Test errors
layer1.size1.err = testMisclass.1.0
layer1.optsize.err = min(unlist(nn.size.errs[1,]))
layer1.optshrink.err = min(unlist(nn.shrinkage.errs[1,]))
layer1.repeat = testErr.repeat
layer1.bagging = testErr.bagging
layer1.caret.err = misclass.caret
layer2.size5.err = misclass.fancy.3
layer3.size5.err = misclass.fancy.4
layer5.size5.err = misclass.fancy.5

# Confusion Matrices
layer1.size1.cm = caret::confusionMatrix(as.factor(predTest.1.0),

as.factor(testSet[,9]))$table
layer1.optshrink.cm =

caret::confusionMatrix(as.factor(nn.shrinkage.opt.predTest),
as.factor(testSet[,9]))$table

layer1.repeat.cm = caret::confusionMatrix(as.factor(nn.repeat.class),
as.factor(testSet[,9]))$table

layer1.bagging.cm = caret::confusionMatrix(as.factor(nn.bagging.class),
as.factor(testSet[,9]))$table

layer1.caret.cm = caret::confusionMatrix(as.factor(nn.caret.pred),
as.factor(testSet[,9]))$table

layer2.size5.cm = caret::confusionMatrix(as.factor(nn.fancy.3.class[,1]),

5



as.factor(testSet[,9]))$table
layer3.size5.cm = caret::confusionMatrix(as.factor(nn.fancy.4.class[,1]),

as.factor(testSet[,9]))$table
layer5.size5.cm = caret::confusionMatrix(as.factor(nn.fancy.5.class[,1]),

as.factor(testSet[,9]))$table

# Neural Net Plots
library(NeuralNetTools)
plotnet(nn.1.0, neg_col="lightblue", circle_col = "pink")
# We do not use the size optimized plot
plotnet(nn.shrinkage.opt, neg_col="lightblue", circle_col = "pink")
# Repeat and Bagging approach does not have a model
plotnet(nn.caret, neg_col="lightblue", circle_col = "pink")
plotnet(neural.3, neg_col="lightblue", circle_col = "pink")
plotnet(neural.4, neg_col="lightblue", circle_col = "pink")
plotnet(neural.5, neg_col="lightblue", circle_col = "pink")

# Run times timed by R
caret.time = tuned.nnet$times$everything
# neuralnet calls are timed, but information not stored
# Thus, R times 2 by 5, 3 by 5, 5 by 5 neural nets

6


	d87a55e0-4d78-4aa2-bf95-b9c27cd756a4.pdf
	Figure 1 and Figure 7
	Figure 2 and Figure 4
	Figure 6

	dfedf78b-d630-4598-a067-7c0f8fea9ebc.pdf
	Feature Selection
	LASSO
	KNN
	RF


